Rocky Mountain Power Docket No. 20-035-04 Witness: Rick A. Vail

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF UTAH

ROCKY MOUNTAIN POWER

Direct Testimony of Rick A. Vail

May 2020

1		I. INTRODUCTION AND QUALIFICATIONS
2	Q.	Please state your name, business address, and present position with PacifiCorp
3		d/b/a Rocky Mountain Power ("Company").
4	A.	My name is Richard A. Vail. My business address is 825 NE Multnomah Street, Suite
5		1600, Portland, Oregon 97232. My present position is Vice President of Transmission.
6		I am responsible for transmission system planning, customer generator interconnection
7		requests and transmission service requests, regional transmission initiatives,
8		transmission capital budgeting, transmission and distribution project delivery, and
9		administration of the Open Access Transmission Tariff ("OATT"). I am testifying on
10		behalf of the Company.
11	Q.	Please describe your education and professional experience.
12	A.	I have a Bachelor of Science degree with Honors in Electrical Engineering with a focus
13		in electric power systems from Portland State University. I have been Vice President of
14		Transmission for PacifiCorp since December 2012. I was Director of Asset
15		Management from 2007 to 2012. Before that position, I had management responsibility
16		for a number of organizations in PacifiCorp's asset management group, including
17		capital planning, maintenance policy, maintenance planning, and investment planning
18		since joining PacifiCorp in 2001.
19		II. PURPOSE OF TESTIMONY
20	Q.	What is the purpose of your testimony in this case?
21	A.	The purpose of my testimony is to describe PacifiCorp's transmission system and the
22		benefits it provides to Utah customers. PacifiCorp's transmission system is designed to
23		reliably transfer electric energy from a broad array of generation resources to load.

Page 1 - Direct Testimony of Rick A. Vail

PacifiCorp's interconnection to other balancing authority areas and participation in the Energy Imbalance Market provide access to markets and promote affordable and reliable service to PacifiCorp's customers. Further, all transmission system capacity increases provide benefits to customers by increasing reliability and allowing more generation to interconnect to serve customer load, as well as allowing PacifiCorp flexibility in designating generation resources for reserve capacity to comply with mandatory reliability standards.

I describe the status of PacifiCorp's construction of the Aeolus-to-Bridger/Anticline 500 kilovolts ("kV") Transmission Line and the additional 230 kV network upgrades required to interconnect the Energy Vision 2020 Wind projects ("230 kV Network Upgrades"). I specifically address the current timeline and estimate of costs.

I also describe PacifiCorp's major capital investment projects for new
 transmission systems included in this rate case, specifically:

- Wallula to McNary 230 kV Transmission Line;
- Snow Goose 500/230 kV Substation;

38

39

- 40 Vantage to Pomona Heights 230 kV Transmission Line;
- 41 Goshen-Sugarmill-Rigby 161 kV Transmission Line; and
- 42 Goshen #3 345/161 kV 700 Megavolt-Ampere ("MVA") Transformer
 43 Installation.
- 44 My testimony demonstrates that the Company has made prudent decisions related to
- 45 these projects and that these investments result in an immediate benefit to PacifiCorp's

46		customers in Utah. I recommend that the Utah Public Service Commission						
47		("Commission") find these investments prudent and in the public interest.						
48		III. OVERVIEW OF PACIFICORP'S TRANSMISSION SYSTEM						
49		AND INVESTMENT DRIVERS						
50	Q.	Please briefly describe PacifiCorp's transmission system.						
51	А.	PacifiCorp owns and operates approximately 16,500 miles of transmission lines						
52		ranging from 46 kV to 500 kV across multiple western states. PacifiCorp serves over						
53		1.9 million customers with approximately 948,710 customers located in Utah.						
54	Q.	Please describe PacifiCorp's responsibility for maintaining reliability on its						
55		transmission system.						
56	А.	In 1996, the Federal Energy Regulatory Commission ("FERC") issued Order No. 888, ¹						
57		which required that transmission system owners provide non-discriminatory access to						
58		their transmission systems. PacifiCorp is obligated under its OATT to plan its						
59		transmission system for the open access of all transmission customers. Through the						
60		OATT Attachment K local planning process and the FERC Order 1000 regional and						
61		inter-regional planning processes, PacifiCorp participates in open stakeholder planning						
62		processes covering its entire transmission footprint. These planning processes result in						
63		system plans that incorporate economics, reliability, and public policy inputs and						
64		requirements. PacifiCorp must also coordinate with other entities in the region for						

¹ Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Pub. Util.; Recovery of Stranded Costs by Pub. Util. and Transmitting Utilities, Order No. 888, 61 FR 21540 (May 10, 1996), FERC Stats. & Regs. ¶ 31,036 (1996), order on reh'g, Order No. 888-A, 62 FR 12274 (Mar. 14, 1997), FERC Stats. & Regs. ¶ 31,048 (1997), order on reh'g, Order No. 888-B, 81 FERC ¶ 61,248 (1997), order on reh'g, Order No. 888-C, 82 FERC ¶ 61,046 (1998).

transmission planning purposes as required under FERC Order No. 1000.² In addition
to these more general requirements, PacifiCorp also must comply with the specific
requirements of the mandatory reliability standards approved by FERC.

68 Q. Who establishes transmission reliability standards?

69 FERC directs the North American Electric Reliability Corporation ("NERC") to A. 70 develop Reliability Standards to ensure the safe and reliable operation of the Bulk 71 Electric System ("BES") in the United States in a variety of operating conditions. On 72 April 1, 2005, NERC established a set of transmission operations reliability standards. 73 A subset of the transmission reliability standards are the transmission planning 74 standards ("TPL Standards"). The purpose of the TPL Standards is to "establish Transmission system planning performance requirements within the planning horizon 75 76 to develop a BES that will operate reliably over a broad spectrum of System conditions and following a wide range of probable Contingencies."³ The TPL Standards, along 77 78 with regional planning criteria (i.e., regional planning criteria established by the 79 Western Electricity Coordinating Council ("WECC")) and utility-specific planning 80 criteria, define the minimum transmission system requirements to safely and reliably 81 serve customers.

- 82 Q. How does PacifiCorp ensure compliance with the TPL Standards?
- A. The Company plans, designs, and operates its transmission system to meet or exceed
 NERC Standards for BES and WECC Regional standards and criteria. To ensure

 ² Transmission Planning and Cost Allocation by Transmission Owning and Operating Pub. Util., Order No. 1000, 76 FR 49842 (Aug. 11, 2011), FERC Stats. & Regs. ¶ 31,323 (2011), order on reh'g, Order No. 1000-A, 139 FERC ¶ 61,132 (2012), order on reh'g, Order No. 1000-B 141 FERC ¶ 61,044 (2012).

³ See <u>http://www.nerc.com/files/tpl-001-4.pdf</u>.

85	compliance with applicable TPL Standards, PacifiCorp conducts an annual system
86	assessment to evaluate the performance of the Company's transmission system and to
87	identify system deficiencies. The annual system assessment is comprised of steady-
88	state, stability, and short circuit analyses ⁴ to evaluate peak and off-peak load seasons in
89	the near-term (one-, two-, and five-year) and long-term (10-year) planning horizons.
90	The assessment is performed using power flow base cases maintained by WECC and
91	developed in coordination among all transmission planning entities in the Western
92	Interconnection. These base cases include load and resource forecasts along with
93	planned transmission system changes for each of the future year cases and are intended
94	to identify future system deficiencies to be mitigated.
95	As part of the annual system assessment, corrective action plans are developed
96	to mitigate identified deficiencies, and may prescribe construction of transmission
97	system reinforcement projects or, as applicable, adoption of new operating procedures.
98	In certain instances, operating procedures prescribing action to change the
99	configuration of the transmission system can prevent deficiencies from occurring when
100	there are two back-to-back (N-1-1) (or concurrent) transmission system events.
101	However, the use of operating procedure actions have limitations. In particular, actions

102 taken in connection with operating procedures that are designed to protect the integrity

⁴ Analyses consist of taking a normal system (N-0) and applying events (N-1, N-1-1, N-2, etc.) within each category (P0, P1, P2, P3, etc.) listed within the TPL Standards in order to identify system deficiencies. Example: An N-1-1 event describes two transmission system elements being out of service at the same time, but due to independent causes. An example of an N-1-1 event would be a planned outage of one 230 kV transmission line followed by an unplanned outage of any element in the system being used to continue service with the initial element out.

103of the larger integrated transmission system in the Western Interconnection of the104United States can lead to large numbers of customers being at risk of an outage upon105the occurrence of the second of two N-1-1 events. An effective corrective action plan106is critical to ensuring system reliability so that large numbers of customers are not107subjected to avoidable outage risk.

108 Q. Is compliance with the reliability standards optional?

109 No. The reliability standards are a federal requirement, subject to oversight and A. 110 enforcement by WECC, NERC, and FERC. PacifiCorp is subject to compliance audits 111 every three years, and may be required to prove compliance during other NERC or 112 WECC reliability initiatives or investigations. Failure to comply with the reliability 113 standards could expose the Company to penalties of up to \$1 million per day, per 114 violation. Accordingly, and as described more fully later in my testimony, compliance 115 with reliability standards is a major driver for the new capital investments in 116 PacifiCorp's system transmission assets identified in and supported by my testimony.

117 Q. Please identify other drivers that are relevant to the capital investments in 118 PacifiCorp's transmission system described in your testimony.

A. There are several other drivers that inform whether PacifiCorp will build new
transmission facilities, including increased demand for transmission capacity, requests
for transmission service, and the age and condition of existing transmission facilities.
The specific drivers for the projects addressed in my testimony are described in more
detail later in my testimony.

Page 6 - Direct Testimony of Rick A. Vail

124

IV. OVERVIEW OF INVESTMENTS DESCRIBED IN TESTIMONY

125 Q. What specific transmission system investments are you addressing in your126 testimony?

- 127 A. My testimony addresses PacifiCorp's major new transmission system projects included
- in this general rate case. Specifically, my testimony addresses the following projects:

129 1. Aeolus to Bridger/Anticline Line and network upgrades associated with new 130 wind generation interconnections:

- The new transmission lines consists of 140 miles of 500 kV transmission line; the new Aeolus (500/230 kV) and Anticline (500-345 kV) substations; a five-mile, 345 kV transmission line from the Anticline substation to the Jim Bridger substation; a voltage control device at the existing Latham substation. The 230 kV Network Upgrades are required to accommodate the transmission project and the interconnection of the Energy Vision 2020 New Wind Projects.
- 137 **2. Wallula to McNary 230 kV Transmission Line:**
- 138The Wallula to McNary 230 kV new transmission line extending from Wallula139substation located in Wallula, Washington, to McNary substation located near Umatilla,140Oregon, as shown in the map attached in Exhibit RMP (RAV-1).
- 141 **3. Snow Goose 500/230 kV Substation:**
- 142 The Snow Goose 500/230 kV substation which is located near Klamath Falls,
- 143 Oregon, as shown in the map attached in Exhibit RMP__(RAV-2).
- 144 **4. Vantage to Pomona Heights 230 kV Transmission Line:**
- 145The Vantage to Pomona Heights 230 kV new transmission line extending from146Vantage substation located northeast of Yakima, Washington, to Pomona Heights

147	substation	located	in	Selah,	Washington,	as	shown	in	the	map	attached	in
148	Exhibit RM	۲P(R	AV-	3).								

149		5. Goshen-Sugarmill-Rigby 161 kV Transmission Line:
150		The Goshen-Sugarmill-Rigby 161 kV transmission line rebuild of an existing
151		69 kV line from Goshen substation to Sugarmill substation and then construction of a
152		new 161 kV line from Sugarmill substation to Rigby substation located in the southeast
153		Idaho area, as shown in the map attached in Exhibit RMP(RAV-4).
154		6. Goshen #3 345/161 kV 700 MVA Transformer Installation:
155		The Goshen #3 345/161 kV 700 MVA transformer installation project located
156		in southeast Idaho, as shown in the map attached in Exhibit RMP(RAV-5).
157	Q.	What are the projected costs associated with these transmission investments and
158		their associated in-service dates?
159	A.	Table 1 identifies the specific projects and associated costs and in-service dates.

Table 1 – Transmission Investment				
Project	Total Company Cost (\$ million)	In-Service Date		
Aeolus to Bridger/Anticline 500 kV line ⁵				
Sequence Two (In-Service)	\$4.1	July 2018		
Sequence Three (In-Service)	\$12.7	January 2020		
Sequence Four	\$660.3	December 2020		
Q707 TB Flats 1	\$30.6	December 2020		
Q712 Cedar Springs Wind 1	\$61.7	December 2020		
Wallula to McNary 230 kV New Transmission Line				
Sequence One (In Service)	\$6.4	December 2017		
Sequence Two (In Service)	\$36.2	January 2019		
Snow Goose 500-230 kV New Substation Project				
Sequence One (In Service)	\$10.3	May 2017		
Sequence Two (In Service)	\$32.5	November 2017		
Vantage to Pomona Heights 230 kV New Transmission Line Project	\$57.8	May 2020		
Goshen-Sugarmill-Rigby 161kV Transmission Line Project				
Sequence One	\$21.7	November 2020		
Sequence Two (not included in this case)	N/A	November 2022		
Goshen #3 345/161 kV 700 MVA Transformer Install TPL				
Sequence One	\$17.2	November 2020		
Sequence Two	\$6.1	November 2021		

⁵ As discussed later in my testimony, Sequence One was placed into service in 2011.

160These amounts include costs associated with engineering, project management,161materials and equipment, construction, right-of-way, and an allowance for funds used162during construction. These costs are also shown in the testimony and exhibits of163Mr. Steven R. McDougal. The in-service dates are based on the best available164information at the time of preparing this case.

165 Q. Please briefly describe the benefits associated with these investments.

A. The benefits associated with these investments include increased load serving
capability, enhanced reliability, conformance with NERC Reliability Standards,
improved transfer capability within the existing system, and relief of existing
congestion. These benefits will be described more fully below.

170 Q. Will PacifiCorp's OATT transmission customers pay for some of these assets?

171 Yes, through OATT transmission charges. The Company's current transmission Α. 172 formula rate (included in PacifiCorp's OATT) was approved by FERC in Docket No. ER11-3643.⁶ The Company's transmission formula rate is updated annually with the 173 174 annual transmission revenue requirement ("ATRR") that represents the annual total 175 cost of providing firm transmission service over the test year. The ATRR calculation 176 incorporates all transmission system investments by the Company, a return on rate base, 177 income taxes, expenses, and certain revenue credits, among other specific elements and 178 adjustments. Transmission assets, including new transmission capital, are included in 179 the ATRR, weighted by months in service. The ATRR is converted into a rate by 180 dividing the ATRR by firm transmission demand. All third-party revenues for 181 transmission service (along with third-party revenues for ancillary services) are

⁶ In re PacifiCorp, 143 FERC ¶ 61,162 (May 23, 2013) (letter order approving settlement agreement establishing formula rate).

182

183

included as revenue credits in the calculation of rates in each of the Company's state retail jurisdictions.

184 Q. Please explain how network upgrade cost allocation works under the OATT.

185 A. In accordance with its OATT, when PacifiCorp receives a request for generation 186 interconnection or transmission service, the Company completes studies to determine 187 what new facilities or upgrades to existing facilities are required to accommodate the 188 request. The studies identify the facilities and upgrades required and classify the asset additions required to support the service into two categories: direct assigned or network 189 190 upgrade. Direct assigned assets are those assets that only benefit or are used solely by 191 the customer requesting generator interconnection or transmission service. Those costs 192 are directly assigned and paid for by that customer and will not be included in either 193 the Company's ATRR or retail rate base. Network upgrades, on the other hand, are 194 those assets that benefit all customers using the transmission system. Costs associated 195 with network upgrades are investments by the transmission provider and are included 196 in PacifiCorp's ATRR⁷ and retail rate base.

197 Q. Please describe the investment for the Aeolus to Bridger/Anticline transmission

- 198 line that is included in the Energy Vision 2020.
- A. The Aeolus to Bridger/Anticline transmission line is planned to be placed in-service in
 four sequences. The first sequence was the purchase of property used for the new
 Aeolus and Anticline substations, which was completed in March 2011. The second

⁷ For generation interconnection customers, those customers may be required to pay the initial cost of network upgrades, subject to refund through credits to invoiced charges for transmission service and full refund of any remaining amounts after 20 years. *See* Section 11.4 of PacifiCorp's Standard Large Generator Interconnection Agreement (OATT Attachment N, Appendix 6 and available at

http://www.oasis.oati.com/woa/docs/PPW/PPWdocs/20190601_OATTMASTER.pdf); see also Standardization of Generator Interconnection Agreements and Procedures, Order No. 2003-B, 109 FERC ¶ 61,287 (December 20, 2004).

sequence was to construct a replacement access bridge over the Medicine Bow River
and complete associated upgrades to an existing unpaved county road in July 2018. The
third sequence of work, completed in January 2020, was the expansion of the Latham
Substation with a new line termination bay to accommodate the installation of a Static
Synchronous Compensator voltage control device. Finally, the last sequence of plant
in-service includes the two 500 kV substations (i.e. Aeolus and Anticline) and the
500 kV transmission line in December 2020.

209 Q. Has the Company made substantial progress on construction of the Aeolus to 210 Bridger/Anticline Line?

211 Yes. The Company has all contracts for construction of the Aeolus to Bridger/Anticline Α. 212 transmission line in place. Construction work commenced in April 2019. As of April 213 2020, the 500 kV transmission line had 100 percent of all foundations installed, 214 91 percent of structures erected and 46 percent of wire stringing completed. The 215 Aeolus, Anticline, and Jim Bridger substations are under construction with grading 216 complete and foundation installations, as well as underground construction, which is 217 ongoing. Steel erection and bus installation has commenced at Aeolus, Anticline, and 218 Jim Bridger substations. Major substation equipment is being manufactured and tested; 219 first deliveries of circuit breakers have been received at all three substations, capacitor 220 banks and reactive devices were delivered in December 2019, and the transformers will 221 begin arriving in spring 2020. The Latham substation expansion is now complete and 222 was placed in-service in January 2020.

Q. Please describe the 230 kV Network Upgrades associated with the Energy Vision 224 2020 Projects.

A. The generation interconnection projects selected as part of a request for proposal to interconnect 1,150 megawatts ("MW") of new wind generation to the transmission system in eastern Wyoming were fully described in Docket No. 17-035-40 and are summarized below. Separate generation interconnection agreements were negotiated and signed for each of the projects.

The Ekola Flats network upgrades are planned to be placed in-service in December 2020. This work includes one 230 kV circuit breaker and one line position with associated switches, which are included in the Aeolus substation scope of work. As such there are no stand-alone network upgrade costs associated with the Ekola Flats project.

The TB Flats I and II network upgrades are planned to be placed in-service in December 2020. This project includes a new 16-mile 230 kV transmission line parallel to an existing 230 kV line from Shirley Basin substation to the proposed Aeolus substation, including modifications to the existing Shirley Basin substation.

239 The Cedar Springs network upgrades are planned to be placed in-service in 240 December 2020. This project includes the reconstruction of four miles of an existing 241 230 kV transmission line between the proposed Aeolus substation and the Freezeout 242 substation, including modifications as required at the Freezeout substation; the 243 reconstruction of 14 miles of an existing 230 kV transmission line between the 244 Freezeout substation and the Standpipe substation, including modifications as required 245 at the Freezeout and Standpipe substations; and the reconstruction of 16 miles of an 246 existing 230 kV transmission line from the proposed Aeolus substation to the existing 247 Shirley Basin substation.

Page 13 - Direct Testimony of Rick A. Vail

Q. Has the Company obtained all of the necessary permits and rights-of-way for the
transmission and network upgrade projects?

- 250 A. Yes.
- Q. Is the Company confident that it can manage the construction schedule risk and
 deliver the Aeolus to Bridger/Anticline transmission line and the 230 kV Network
 Upgrades for the new wind facilities of Energy Vision 2020 by year-end 2020?
- A. Yes. To manage construction schedule risk, the Company structured each of the Aeolus
 to Bridger/Anticline contracts and the 230 kV Network Upgrades contracts on a firm,
 date-certain, fixed-price, turnkey contract basis. Construction contractors and
 equipment suppliers are being held to key construction and delivery milestones and
 development of compressed schedule mitigation plans, if required.
- Q. Please expand on some of the elements that will help the Company manage therisk of delay.
- A. In its contracts, the Company set contractual milestones well in advance of the December 2020 project in-service date for all elements of the transmission and substation projects, and the 230 kV Network Upgrades. If needed to mitigate unforeseen circumstances, the contractor and the Company are prepared to implement compressed schedule mitigation plans.

266 Q. Has the Company implemented any contingency options on a project to date?

A. Yes. PacifiCorp instituted a contingency plan for two components of the 230 kV
Network Upgrades. Construction work was hampered during the winter/spring seasons
of 2020 on account of severe winter weather. The Bureau of Land Management
imposed stringent winter game restrictions that adversely affected construction. The

dates affected by the additional Bureau of Land Management restrictions were the May 271 272 2020 estimated completion dates for two transmission line segments of the 230 kV 273 Network Upgrades: Aeolus to Shirley Basin and Aeolus to Freezeout.

274 The only impact from the additional restrictions was an anticipated delay to 275 supplying back-feed power to the Ekola Flats wind project, which is needed by June 276 15, 2020. The Company, however, implemented a contingency plan that will supply the 277 back-feed power needed, on a temporary basis, by June 15, 2020 date, and is working 278 with the contractor to modify the contractual substantial completion dates of the Aeolus 279 to Shirley Basin and Aeolus to Freezeout transmission lines to October 31, 2020. At 280 this point, no other contingency solutions are required to ensure the project in-service 281 date of December 2020.

282 What are the major milestones remaining before the December 2020 in-service 0. 283 date for the Aeolus to Bridger/Anticline transmission line and 230 kV Network **Upgrades?** 284

- 285 Major milestones are identified below: A.
- 286 500 kV Transmission

287

288

- Mechanical Completion; August 31, 2020
- Substantial Completion; October 31, 2020

289 500 kV Substations

- 290 Mechanical Completion Aeolus 230 kV yard; May 15, 2020 291 Substantial Completion Aeolus 230 kV yard; June 15, 2020 292 Mechanical Completion (all remaining work); August 31, 2020 293
 - Substantial Completion (all remaining work); October 31, 2020

294		230 kV Network Upgrades
295		• Aeolus to Shirley Basin Substantial Completion: October 31, 2020 ⁸
296		• Aeolus to Freezeout Substantial Completion: October 31, 2020 ⁹
297		• Freezeout to Standpipe Substantial Completion: September 15, 2020
298		• Aeolus to Shirley Basin (rebuild) Substantial Completion:
299		September 30, 2020
300	Q.	Please describe the estimated total cost of the Aeolus to Bridger/Anticline
301		transmission line.
302	A.	The forecasted costs of the Aeolus to Bridger/Anticline transmission line remain at
303		approximately \$679.2 million, the amount approved in Docket No. 17-035-40, and as
304		summarized in Table 2.

Table 2	
Item	Total Company Value (\$ million)
Transmission Line	\$234.6
Substations	\$214.1
Engineering	\$18.9
ROW Acquisition	\$16.0
PM/Environmental/Support Works	\$92.4
In-directs	\$86.7
Contingency	\$16.5
TOTAL	\$679.2

305 The entire cost of the Aeolus to Bridger/Anticline transmission line will be incurred by

306 the Company without contribution from any transmission customer projects.

⁸ Changed from May 15, 2020, due to additional restrictions imposed by the Bureau of Land Management.

⁹ Changed from May 30, 2020, due to additional restrictions imposed by the Bureau of Land Management.

307 Q. Please describe the estimated total cost of the 230 kV Network Upgrades.

308 A. The 230 kV Network Upgrades are now estimated to cost \$92.2 million, as summarized

309 in Table 3 below. This is approximately \$14.9 million more than the estimate that

310 received pre-approval from the Commission.¹⁰

Table 3	
Item	Total Company Value (\$ million)
Transmission Line	\$53.15
Substations	\$12.67
Engineering	\$3.7
ROW Acquisition	\$1.1
PM/Environmental/Support Works	\$9.15
In-directs	\$9.69
Contingency	\$2.78
TOTAL	\$92.2

311 Q. What are the drivers for the cost increase?

A. The increase in cost was due to the competitive bid price received for the transmission line elements of the 230 kV Network Upgrades, which exceeded the initial forecast value. The increase in transmission line costs are attributable to market conditions that changed after the initial cost estimate was prepared in early 2018 and approved by the Commission in Docket No. 17-035-40. The estimate was prepared using historical metrics to develop a cost plan, which could not have accounted for the rapid expansion of projects in the industry that occurred just prior to the time of the bid, including

¹⁰Application of Rocky Mountain Power for Approval of a Significant Energy REsource Decision and Voluntary Request for Approval of Resource Decision, Docket No. 17-035-40, Order at 37 (Jun. 22, 2018).

Pacific Gas & Electric Company's transmission improvement program, initiated in
response to extensive wildfires in California.

321 Q. Did the Company issue a request for proposals for the 230 kV Network Upgrades?

- A. Yes. The competitively bid price reflected excess demand on lineman resources as a
 result of the increased project demand. In addition, the increase in projects also created
 cost impacts on steel and other materials. Several potential bidders who had previously
 done work for PacifiCorp declined to bid, citing lack of resources as their reason.
 Nevertheless, a subsequent final competitive auction among finalist bidders resulted in
 an approximate 4.5% reduction from the original bid value.
- 328 Q. Why was there an increase for the 230 kV Network Upgrades but not for the
 329 Aeolus to Bridger/Anticline transmission line?
- A. The Company sought bids for the Aeolus to Bridger/Anticline transmission line earlier
 in the process. The construction requirements in California following the wildfires,
 however, changed the market conditions when the Company went to bid the 230 kV
 Network Upgrade projects.
- 334 V. WALLULA-MCNARY 230 KV NEW TRANSMISSION LINE
- 335 Q. Please describe the investment for the Wallula to McNary 230 kV New
 336 Transmission Line.
- A. The Wallula to McNary 230 kV New Transmission Line project consisted of two
 sequences of work, the combined costs of which are included in this general rate case.
 The first work sequence was placed in-service in December 2017 for \$6.4 million and
 included expansion at PacifiCorp's Wallula substation, as well as, relay and
 communications work at the Nine Mile substation. The second sequence of work was

Page 18 - Direct Testimony of Rick A. Vail

the construction of the new 230 kV transmission line that went into service in January
2019, for \$36.2 million. A one-line diagram of the Wallula to McNary 230 kV New
Transmission Line project is included in Exhibit RMP (RAV-1).

345 Q. Please explain why this investment in the Wallula to McNary 230 kV New 346 Transmission Line project was necessary.

347 The Wallula to McNary 230 kV New Transmission Line project was needed to enable A. 348 PacifiCorp to comply with PacifiCorp's OATT, its transmission service agreements, 349 and FERC's requirements to provide the requested transmission service. Before this 350 line went into service, there were only two MW of available transfer capacity on the 351 existing line between Wallula and McNary, which was insufficient to satisfy the 352 requests for service from providers of generation capacity from renewable resources. 353 The completion of the project now enables PacifiCorp to fulfill such requests in compliance with its OATT requirements, and will also increase the Company's access 354 355 to generation capacity from new resources.

356 In addition, the project enhances transmission reliability by providing a second connection between the Bonneville Power Administration's ("BPA") McNary 357 358 substation and PacifiCorp's Wallula substation. With only a single line between Wallula 359 and McNary, line outages (either planned or unplanned), historically caused disruption 360 of service to customers. This disruption resulted in loss of service under existing 361 contracts or reduced reliability for customers served from the Wallula substation. The 362 new second line will provide service reliability in a single line outage condition, and, 363 because it was constructed with lightning protection, the new line reduces lightning-364 caused voltage sag events in the area.

Page 19 - Direct Testimony of Rick A. Vail

365 Q. Did PacifiCorp consider alternatives to investing in the Wallula to McNary 230 kV 366 New Transmission Line project?

- 367 Yes. In lieu of the selected project, PacifiCorp considered re-building the existing A. 368 Wallula to McNary 230 kV transmission line to a double circuit line, but this project 369 had an estimated cost of \$73.6 million. As a second alternative, PacifiCorp considered 370 re-conductoring the existing Wallula to McNary 230 kV transmission line with high 371 temperature conductor. This alternative would have required the addition of phase 372 shifting transformers to produce increased flow on the line and a new substation to 373 place the equipment at an estimated cost of \$53.6 million. Both alternatives were 374 rejected due to cost savings associated with investing in the Wallula to McNary 230 kV 375 New Transmission Line project.
- 376

VI. SNOW GOOSE 500/230 KV NEW SUBSTATION

377 Q. Please describe the investment for the Snow Goose 500/230 kV New Substation 378 project.

379 This project consisted of constructing a new 500/230 kV substation located near A. 380 Klamath Falls, Oregon, as shown on the map attached in Exhibit RMP (RAV-2). The new Snow Goose substation has a 500/230 kV, 650 MVA transformer bank and 381 382 associated switchgear. In addition, PacifiCorp constructed 0.5 miles of 230 kV 383 transmission line and 1.2 miles of 500 kV transmission line to integrate the substation 384 into the area's 230 kV and 500 kV systems. The 230 kV yard was placed in-service in 385 May 2017, and the 500 kV yard was placed in-service in November 2017, for a total of 386 \$42.8 million. A one-line diagram of the Snow Goose 500/230 kV New Substation 387 project is also included in Exhibit RMP (RAV-2).

Page 20 - Direct Testimony of Rick A. Vail

388 Q. Please explain the benefits of this investment in the Snow Goose 500/230 kV New
389 Substation and why it was necessary.

390 The need for the Snow Goose 500/230 kV New Substation project was based on A. 391 achieving continued compliance with reliability standards mandated by NERC under 392 the TPL Standards. In 2012, PacifiCorp performed TPL Standards screening studies 393 that identified system performance deficiencies following the single contingency loss 394 of PacifiCorp's existing 500/230 kV, 650 MVA transformer bank at Malin substation. 395 Specifically, PacifiCorp determined that during the 2017 projected summer peak load 396 conditions, the loss of the transformer bank would result in the system failing to meet 397 the low voltage limits on the PacifiCorp-owned 230 kV, 115 kV and 69 kV systems and 398 an increase in the load on the Copco-Lone Pine 230 kV line. By 2027, the Copco-Lone 399 Pine 230 kV line would exceed its rated thermal continuous and emergency capacity 400 during this outage. This outage would also cause a reduction of the power flow on the 401 Alturas-Reno WECC Path 76. As a result, firm scheduled transfers on this line could 402 not continue to be supported without a second 230 kV source.

403 Construction of the Snow Goose substation provided a second 500 kV to 404 230 kV transmission tie in the area ensuring that PacifiCorp is able to maintain 405 adequate system voltage and power delivery during a single contingency outage 406 condition, thus maintaining service for customers in southern Oregon and northern 407 California.

408 Q. Did PacifiCorp consider alternatives to investing in the Snow Goose 500/230 kV 409 New Substation project?

A. Yes. In lieu of the Snow Goose 500/230 kV New Substation project, PacifiCorp
considered resolving the deficiencies under the TPL Standards by installing a second
transformer at Malin substation and building a second line from Malin to Klamath
Falls. This alternative was rejected as Malin substation could not be readily expanded
to accommodate a new 500/230 kV transformer position due to physical site
constraints. This alternative was estimated to be \$85.0 million.

416 A second alternative would have involved installing a 500/230 kV, 650 MVA 417 transformer at the BPA-owned Captain Jack substation and building 27 miles of 230 kV 418 line from Captain Jack to Klamath Falls. Adding another transformer at Captain Jack 419 substation would require increasing the size of the substation property and reaching an 420 agreement with BPA. This alternative was estimated to be \$90.0 million and was 421 rejected because of insufficient space at the BPA-owned Captain Jack substation, 422 inadequacy of the site in serving as a new source of 69 kV to the Klamath Falls 423 metropolitan area, and additional reinforcement requirements of the 230 kV path 424 between Captain Jack and Klamath Falls substations.

425The last alternative considered would have involved installing a 500/230 kV,426650 MVA transformer at the Klamath Co-Gen substation and building a new 230 kV427line to tap the Klamath Falls-Boyle 230 kV line. As with the first alternative, this option428was rejected due to space and cost limitations. Estimated costs for this alternative were429\$85.0 million.

430

VII. VANTAGE TO POMONA HEIGHTS 230 KV NEW TRANSMISSION LINE

431

Q. Please describe the investment for the Vantage to Pomona Heights 230 kV New

432 Transmission Line.

433 A. The Vantage to Pomona Heights 230 kV new transmission line consists of a new 434 41-mile, 230 kV transmission line that extends from BPA's Vantage substation near 435 Vantage, Washington, and ends at PacifiCorp's Pomona Heights substation in Yakima, 436 Washington, as shown on the map attached in Exhibit RMP (RAV-3). The project 437 consists of two sequences of work. The first work sequence to expand the Pomona 438 Heights substation 230 kV ring bus to provide adequate breaker separation between 439 lines and transformers for breaker failure and bus fault events was placed in-service in 440 November 2015 for \$9.4 million. The second sequence of work is projected to be placed in-service in May 2020 for an estimated \$57.8 million and includes the installation of 441 442 a new 230 kV transmission line connected at BPA's Vantage substation and ending at 443 the Pomona Heights substation. The Company has now received full federal 444 permissions to construct this transmission line. The final segment permission was 445 received from the Bureau of Land Management on September 27, 2019. This portion 446 of the project will include the installation of breakers, protection and control 447 equipment, and communications equipment at each substation as required to monitor 448 and safely operate the new line. The infrastructure additions at Vantage substation will 449 be designed, purchased, installed, and maintained by BPA. A one-line diagram of the 450 Vantage to Pomona 230 kV new transmission line is also included in Exhibit RMP (RAV-3). 451

452 Q. Please explain why this investment in the Vantage to Pomona Heights 230 kV New
453 Transmission Line is necessary.

454 The need for the Vantage to Pomona Heights 230 kV project was identified through A. 455 internal planning studies and a coordinated Northwest Transmission Assessment 456 Committee study in 2007. NERC screening studies conducted in 2009 and subsequent 457 NERC screening studies additionally identified TPL Standards performance 458 deficiencies following breaker failure and bus fault events on the Pomona Heights 459 230 kV bus and various N-1-1 outages associated with the Wanapum to Pomona 460 Heights 230 kV line. Breaker failure and bus fault and N-1-1 events on other portions 461 of the Yakima 230 kV and 115 kV systems result in additional TPL Standards 462 performance deficiencies. In total, there are eight contingency combinations that were 463 identified that could give rise to the need to shed Yakima area load. The Yakima area is 464 currently served primarily by two 230 kV transmission sources. The loss of both 465 primary 230 kV sources or loss of one primary 230 kV source and another major 466 element in the underlying system leaves the remaining system unable to provide 467 adequate electric service to all customers in the area.

The addition of a new 230 kV line between Vantage and Pomona Heights substations and providing a third 230 kV source to the area mitigates the identified deficiencies. Specifically, the project eliminates the need to shed Yakima area load for those eight contingency combinations and eliminates overloads in the PacifiCorp and BPA transmission systems with loss of the existing line.

Page 24 - Direct Testimony of Rick A. Vail

473 By enabling PacifiCorp to comply with the TPL Standards and increasing the 474 reliability of PacifiCorp's transmission system by eliminating the need to shed Yakima 475 area load under certain outage conditions, this project provides benefits to customers.

476 Q. Did PacifiCorp consider alternatives to investing in the Vantage to Pomona 477 230 kV New Substation Project?

478 Yes. In lieu of the selected project, the new 230 kV line from Vantage to Pomona A. 479 Heights, PacifiCorp considered constructing a new 500/230 kV transformer and bus 480 position at Wautoma substation and a new 230 kV transmission line from Wautoma 481 substation to Pomona Heights substation resulting in an estimated cost of \$89.6 million. 482 This alternative was rejected because the costs were higher than the selected project. 483 Another alternative would have involved constructing a second 230 kV transmission 484 line from Midway substation to Union Gap substation. This alternative was rejected 485 because it would have only corrected the identified deficiencies for approximately 486 10 years before additional transmission reinforcement would be required.

487

VIII. GOSHEN-SUGARMILL-RIGBY 161 KV TRANSMISSION LINE PROJECT

- 488 Q. Please describe the investment for the Goshen to Sugarmill to Rigby 161 kV
 489 Transmission Line project.
- A. The Goshen-Sugarmill-Rigby 161 kV Transmission Line project consists of
 constructing approximately 44 miles of new transmission lines from the Goshen to
 Sugarmill and Sugarmill to Rigby substations located in southeast Idaho. Substation
 expansion will be required at Goshen, Sugarmill, and Rigby substations to
 accommodate the new 161 kV positions and associated structures and equipment, as
 shown on the map attached in Exhibit RMP_(RAV-4). The project consists of two

496 sequences of work. The first work sequence, planned to be in-service in November 497 2020 for \$21.7 million, is to construct approximately 24 miles of the new Goshen to 498 Sugarmill #2 161 kV transmission line and perform the required substation construction 499 at Goshen and Sugarmill substations to terminate the new transmission line at both 500 ends. The new 161 kV line consists of approximately 22.2 miles of 69 kV line rebuilt 501 to 161 kV and 1.6 miles of new double circuit construction into Sugarmill substation. 502 Substation work includes yard expansion for adding the new 161 kV line positions and 503 installation of transmission dead-end structures, substation bus and associated 504 disconnect switches, and breakers. The substation work also includes the installation 505 of protection and control equipment, and communications equipment at each substation 506 as required to monitor and safely operate the new line. The second work sequence is 507 planned to be in-service in November 2022, which falls outside of the scope of this 508 case. The second sequence will consist of constructing approximately 20 miles of the 509 new Sugarmill to Rigby #2 161 kV line and performing the required substation 510 construction at Goshen and Sugarmill substations to terminate the new transmission 511 line at both ends of the line.

512 Q. Please explain why this investment in the Goshen to Sugarmill to Rigby 161 kV 513 Transmission Line project is necessary.

A. The need for the Goshen to Sugarmill to Rigby 161 kV line was identified in the 2016
Goshen Area Planning Study to address projected overloads on the Goshen to Sugarmill
161 kV line and Goshen to Rigby 161 kV line, in addition to low voltage at Rigby and
Sugarmill substations that manifest under heavy loading conditions. Projected peak
summer load conditions in 2021 in the Rigby-Sugarmill area indicate that under normal

519 operating conditions (N-0) the Goshen to Sugarmill 161 kV line is expected to load to 520 100 percent of its continuous rating of 201 MVA and the Rigby and Sugarmill substations 161 kV bus voltage is expected to reach its minimum limit of 0.95 per unit. 521 522 Additionally, the projected load growth exacerbates several existing N-1 conditions in 523 the area. Based on 2021 load, loss of the Goshen to Sugarmill 161 kV line causes the 524 Goshen to Rigby 161 kV line to overload to 179 percent of its four-hour emergency 525 rating and can result in excessively low voltage down to 0.68 per unit in the Rigby-526 Sugarmill area. The loss of the Goshen to Rigby 161 kV line can cause the Goshen to 527 Sugarmill 161 kV line to overload to 111 percent of its four-hour emergency rating of 528 255 MVA, overload to 102 percent of its 30-minute emergency rating of 279 MVA, and 529 can cause low voltage down to 0.88 per unit at Rigby substation. The Goshen to 530 Sugarmill 161 kV line and Goshen to Rigby 161 kV line are operated radially during 531 summer heavy loading periods to mitigate the risk of violating NERC Standard TPL-532 001-4 category P0 (N-0), P1 (N-1) and P6 (N-1-1) performance requirements due to 533 transmission capacity deficiencies in the area. Operating radially puts approximately 534 150 MW of load at risk for N-1 loss of either the Goshen to Sugarmill 161 kV line or 535 the Goshen to Rigby 161 kV line and 300 MW at risk for N-1-1 loss of any two 536 transmission lines.

537The new Goshen-Sugarmill-Rigby 161 kV line will increase load serving538capacity in the Rigby-Sugarmill area by 250 MVA that will allow the transmission lines539between Goshen, Sugarmill, and Rigby substations to operate in a normal loop540configuration and N-1 thermal overload and low voltage issues on the remaining541transmission line and substation. Benefits also include elimination of the N-0 overload

Page 27 - Direct Testimony of Rick A. Vail

risk, improved load service reliability under N-1 conditions, and resolution of most
N-1-1 issues present in the area.

544 Q. Did PacifiCorp consider alternatives to investing in the Goshen to Sugarmill to 545 Rigby 161 kV Transmission Line project?

546 Yes. The first alternative in lieu of the Goshen-Sugarmill-Rigby 161 kV line that A. 547 PacifiCorp considered was a project to construct a new approximately 35-mile long 548 Goshen to Rigby 345 kV line with 1272 aluminum conductor steel-reinforced 549 ("ACSR") cable and add a new 450 MVA capacity or larger 345/161 kV transformer at 550 the Rigby substation. Work involved expanding both the Goshen and Rigby substation 551 yards to accommodate the new facilities consisting of at least two 345 kV breakers at 552 Goshen, one 345 kV breaker at Rigby and at least two 161 kV breakers at the Rigby 553 161 kV substation. This alternative was rejected since the estimated cost of the project 554 was about \$17.0 million higher than the chosen project to construct the new Goshen-555 Sugarmill-Rigby 161 kV transmission line. The alternative was estimated to be 556 \$57.7 million.

557 A second alternative considered was to construct approximately 61 miles of 558 161 kV transmission line from Antelope to Rigby with 1272 ACSR cable or larger. 559 Work involved expanding both the Antelope and Rigby substation yards to 560 accommodate the new facilities consisting of at least two 161 kV breakers at Antelope 561 and at least two 161 kV breakers at Rigby. A new 161 kV line from Antelope would 562 provide a new source into the Rigby-Sugarmill area apart from Goshen substation; 563 however, planning studies indicated that by adding the Antelope to Rigby 161 kV line, the N-1 loss of the Goshen to Sugarmill 161 kV line would still cause thermal overload 564

Page 28 - Direct Testimony of Rick A. Vail

565and low voltage issues in the area and that load shedding and radialization of the Rigby-566Sugarmill area would still be required. This alternative was rejected since the estimated567cost of the project was about \$8.0 million higher than the new Goshen-Sugarmill-Rigby568161 kV transmission line and that a new Antelope to Rigby 161 kV transmission line569does not resolve the loading and voltage issues in the Rigby-Sugarmill area. The570alternative was estimated to be \$48.0 million.

571 A third alternative considered was to construct approximately 22.8 miles of 572 161 kV transmission line from the Meadow Creek wind farm substation to Sugarmill 573 and Rigby substations to create a looped transmission source back to Goshen 574 substation. Work involved constructing approximately 5.9 miles of new single circuit 575 161 kV transmission line from Meadow Creek to a new tap location, using the existing 576 right-of-way to construct 4.5 miles of double-circuit line from the new tap location to Sugarmill substation, and construct 12.4 miles of new single-circuit 161 kV line from 577 578 the new tap location to Rigby substation. Work also included converting Meadow 579 Creek's 161 kV substation yard into a new three breaker ring bus, installation of at least 580 two 161 kV breakers at Sugarmill and Rigby substations, rebuilding the Goshen -581 Wolverine Creek - Jolly Hills - Meadow Creek 161 kV line with 1557 ACSR cable 582 (approximately 32.4 miles), rebuilding the remaining three miles of 795 all-aluminum 583 conductor ("AAC") cable on the Goshen-Sugarmill 161 kV line, and adding a 161 kV 584 bus tie breaker at Rigby to facilitate sectionalizing post N-1. Currently, the Goshen 585 wind farms are radial from the Goshen 161 kV substation. Once looped through the 586 Rigby and Sugarmill substations, a detailed voltage control study would be required to 587 coordinate the wind farms and shunt devices in the area. Since the existing radial wind

farm line is owned and operated by third parties, an agreement to use or buy the facilities would need to be negotiated. This alternative was rejected since the estimated cost of the project was about \$8.2 million higher than the new Goshen-Sugarmill-Rigby 161 kV transmission line and required significant coordination with third parties to deliver the project. The alternative was estimated to be \$48.5 million.

593 The last alternative considered was to loop the existing Goshen to Jefferson 594 161 kV transmission line in and out of the Bonneville substation. Work involved 595 converting the Bonneville substation into a 161 kV breaker and one-half configuration, 596 constructing an approximately 27-mile-long 161 kV line from Bonneville to Rigby 597 substation with at least 1557 ACSR cable. Work also involved expanding both the 598 Rigby substation yards to accommodate a new 161 kV line position consisting of at 599 least two 161 kV breakers at the Rigby substation. Adding this new Bonneville to Rigby 600 161 kV line does not improve N-1 and N-1-1 issues in the area and therefore is not 601 considered as a viable alternative. The estimate for this project was \$33.2 million. 602 Additional projects would be required to address the N-1 and N-1-1 issues. These 603 projects include reconductoring 32 miles of Goshen to Rigby 161 kV line, 604 reconductoring 16 miles of Sugarmill to Rigby 161 kV line, and reconductoring 605 3.5 miles of 795 AAC cable on existing Goshen to Sugarmill 161 kV line. Additionally, a new Goshen-Sugarmill 161 kV line would be required to mitigate the low voltage and 606 607 voltage swings caused by the loss of the existing Goshen to Sugarmill 161 kV line. The 608 estimate to reconductor these lines was \$6.6 million and the estimate to construct a new 609 Goshen to Sugarmill 161 kV line was \$13.3 million. This alternative was rejected since the estimate for the new Bonneville to Rigby 161 kV line and supporting projects was 610

about \$12.7 million higher than the recommended new Goshen-Sugarmill-Rigby
161 kV transmission line project. The alternative was estimated to be \$53.1 million.

613 IV. GOSHEN #3 345/161 KV 700 MVA TRANSFORMER INSTALLATION PROJECT

614 Q. Please describe the Goshen #3 345/161 kV 700 MVA transformer project.

615 The Goshen #3 transformer project is to install a third 345/161 kV transformer at the A. 616 Goshen substation, located in southeast Idaho, and expand the 161 kV yard to 617 accommodate a new feed from the 345 kV yard. In addition, various 161 kV lines will 618 be relocated and the existing Goshen 161 kV dual operate bus will be converted into a 619 breaker and one-half 161 kV scheme. Redundant 161 kV relays will also be installed. 620 The project will use a spare 345/161 kV transformer that was delivered in March 2018 621 and a spare 345/161kV transformer will be purchased to be located at the Gadsby Plant 622 as required per PacifiCorp grid resiliency plan. The Company is expecting this project 623 to be in-service in November 2020. The spare replacement transformer is expected to 624 be received in November 2021 for \$6.1 million.

625 Q. Please explain why the Goshen #3 345/161 kV 700 MVA transformer project is 626 necessary.

A. The Goshen #3 transformer installation project will resolve NERC TPL-001-4 Category P1-3 (N-1) thermal overloading issues on the existing Goshen transformers beginning in 2021. The Goshen substation has two 345/161 kV 450 MVA transformers which serve the load in the area. As loads in the Goshen area increase, the risk of overloading one of the existing Goshen transformers due to the loss of the other increases as well. The 2016 Goshen area studies indicated that by 2021, loss of either one of the Goshen 345/161 kV transformers can overload the remaining Goshen

Page 31 - Direct Testimony of Rick A. Vail

634 345/161 kV transformer above its emergency rating. Historical Goshen area load and 635 generation data for the 2013-2017 period indicated that the average risk of overloading 636 one of the Goshen 345/161 transformers under an N-1 condition was 10.5 percent each 637 year (915 hours/38 days-the average number hours each year where area generation 638 was below 200 MW and load was in excess of 450 MW). Since a transformer outage 639 is a potential long term outage (up to 18 months to order and install a new transformer), 640 the risk of overloading one of the Goshen transformers could be present for an extended 641 period, or until the spare can be installed which would take 2-3 months.

642 Q. Did PacifiCorp consider alternatives to investing in the Goshen #3 345/161 kV 700
643 MVA transformer installation project?

644 Yes. The first alternative considered was to add a new 345/161 kV transformer at the A. 645 Rigby substation. However, since the Rigby substation does not have a 345 kV source, 646 a new 35-mile-long 345 kV line from the Goshen to Rigby substation would have been 647 required. This alternative would have also required at least two 345 kV breakers at the 648 Goshen substation and one 345 kV breaker and one 161 kV breaker at the Rigby 649 substation. In addition an expansion of the Rigby substation yard would have been 650 necessary to accommodate the new 345 kV bus, transformer, breakers etc. An estimate 651 of this project is \$71 million. This alternative was not selected due to significantly 652 higher cost than the preferred solution.

653The second alternative considered was to construct an approximately 61-mile-654long 161 kV line from Antelope substation to Rigby substation with at least 1272 ACSR655conductor. The un-scoped estimate for this alternative was \$48.7 million. Planning656studies showed that this alternative line would cause thermal overload and low voltage

Page 32 - Direct Testimony of Rick A. Vail

issues in the area and load shedding and radialization of the Rigby-Sugarmill area
would still be required. Due to this and the increased cost for construction this
alternative was determined to not be a feasible project to improve service to the RigbySugarmill area.

661

V. CONCLUSION

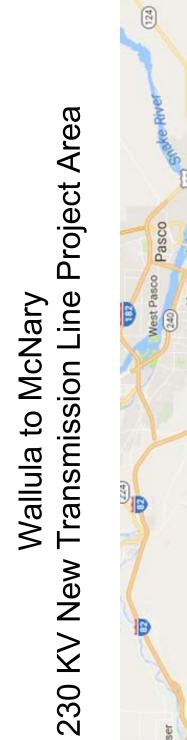
662 Q. Please summarize your testimony.

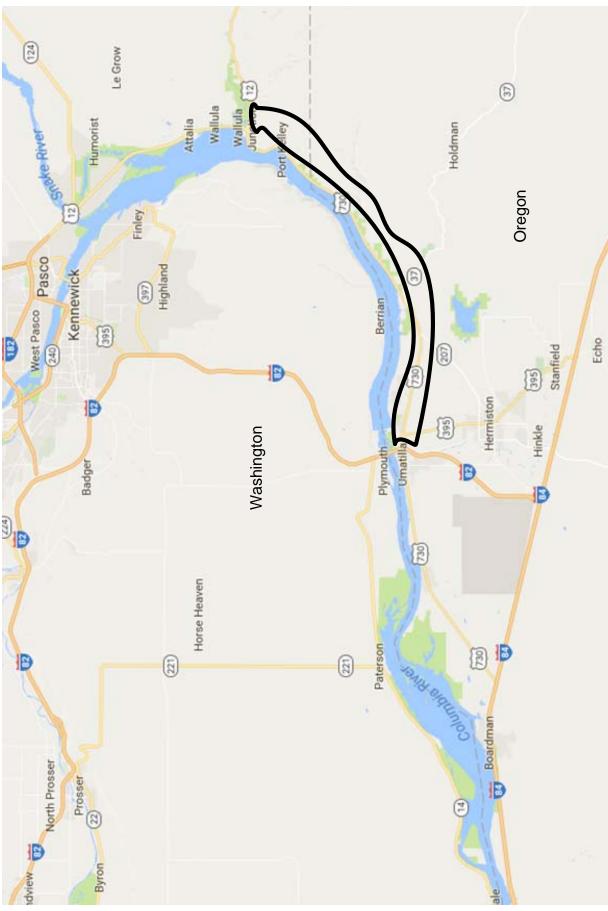
A. I recommend that the Commission determine that the transmission projects outlined in
 my testimony were necessary to ensure the Company maintains compliance with
 required reliability standards, to serve increased load, will provide benefits to the
 Company's customers, and are therefore prudent and in the public interest.

- 667 Q. Does this conclude your direct testimony?
- 668 A. Yes.

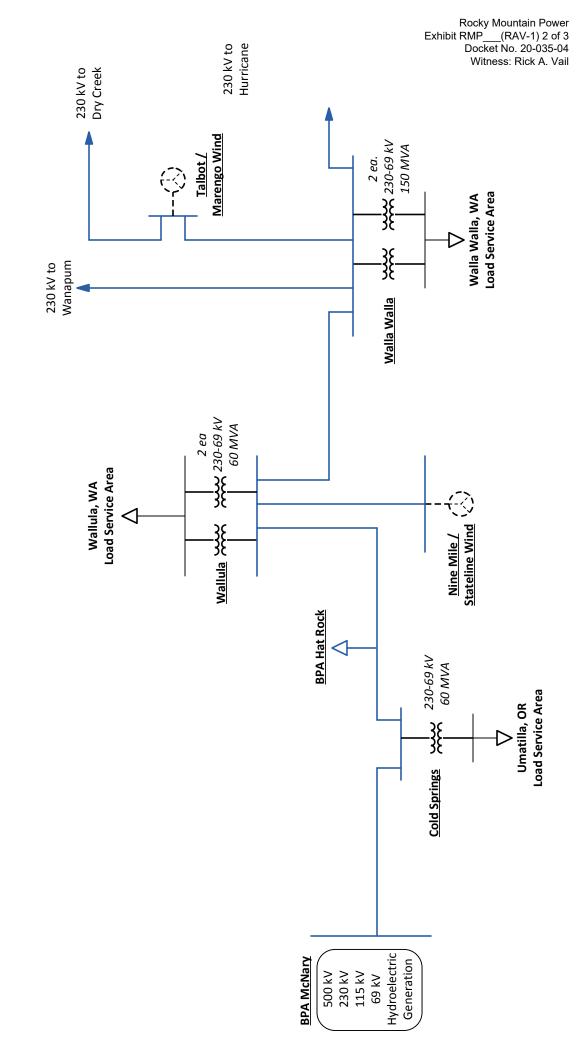
Rocky Mountain Power Exhibit RMP___(RAV-1) Docket No. 20-035-04 Witness: Rick A. Vail

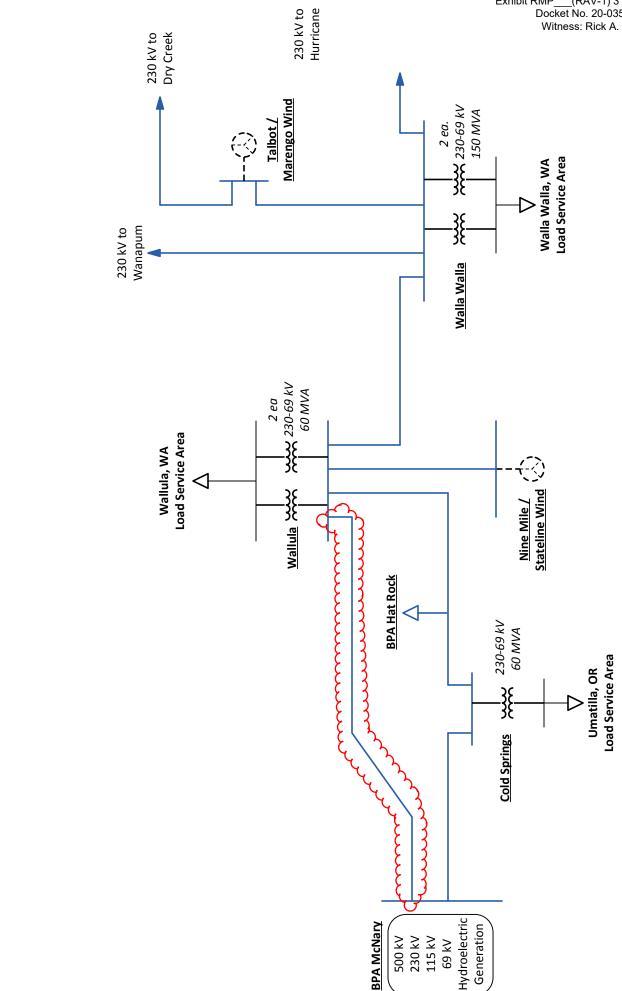
BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF UTAH


ROCKY MOUNTAIN POWER


Exhibit Accompanying Direct Testimony of Rick A. Vail

Wallula-McNary 230 kV Transmission Project


May 2020

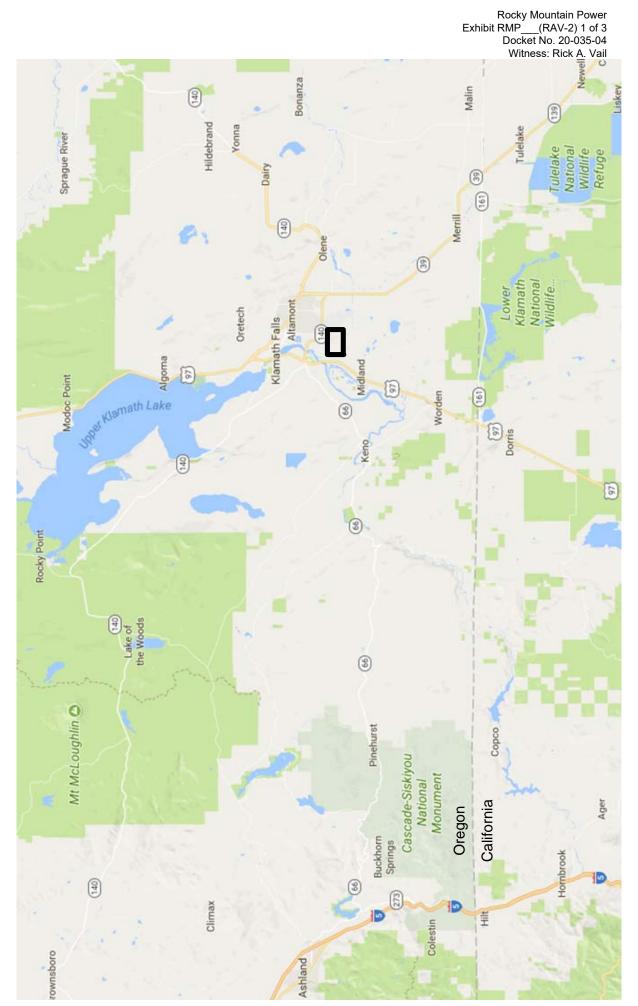

Rocky Mountain Power Exhibit RMP___(RAV-1) 1 of 3 Docket No. 20-035-04 Witness: Rick A. Vail

Wallula-McNary #2 Project Diagram Post-Project

Note: Dashes Indicate Non-PacifiCorp Facilities

Rocky Mountain Power Exhibit RMP___(RAV-1) 3 of 3 Docket No. 20-035-04 Witness: Rick A. Vail

Rocky Mountain Power Exhibit RMP___(RAV-2) Docket No. 20-035-04 Witness: Rick A. Vail


BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF UTAH

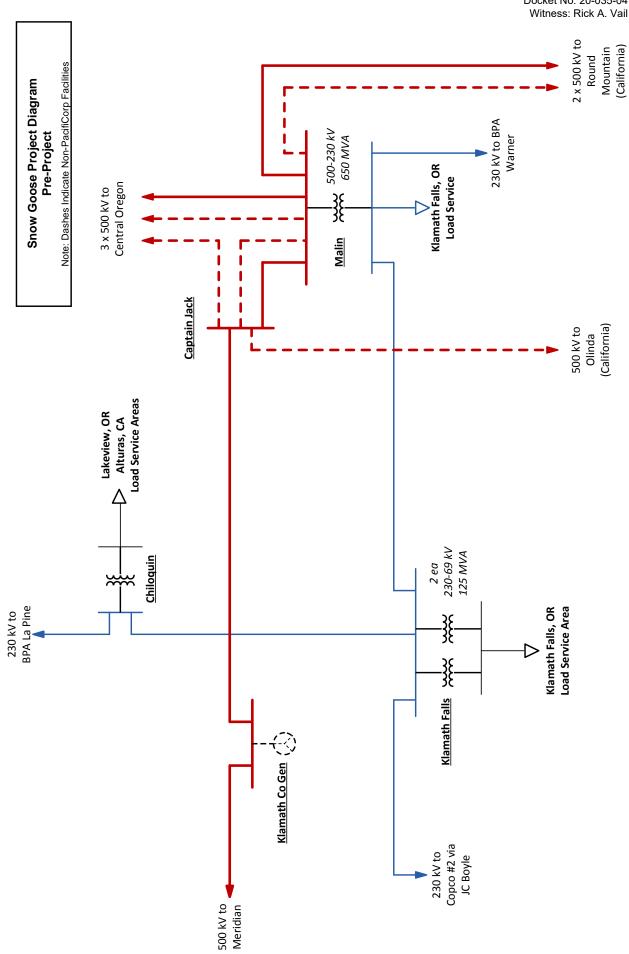
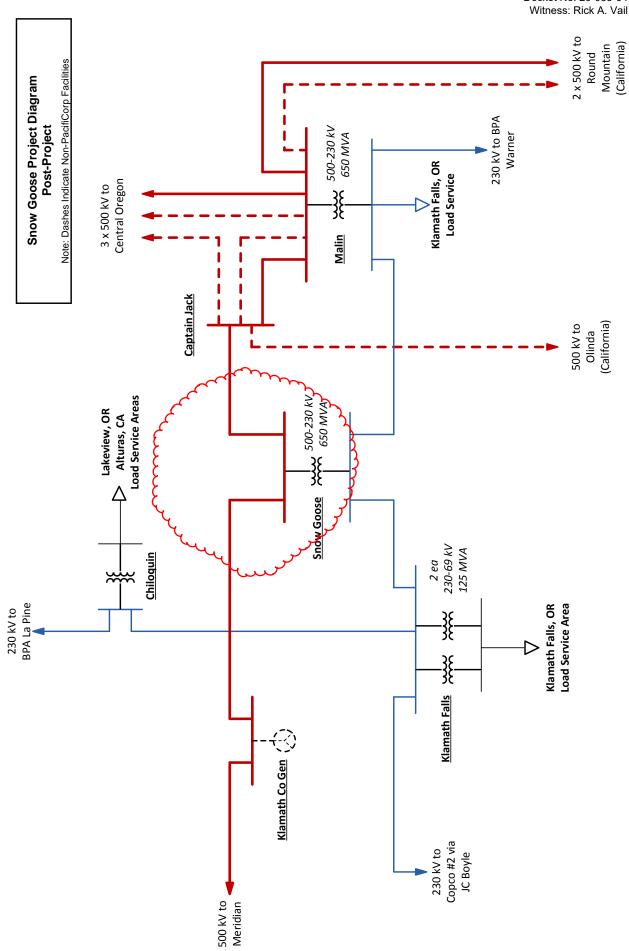

ROCKY MOUNTAIN POWER

Exhibit Accompanying Direct Testimony of Rick A. Vail

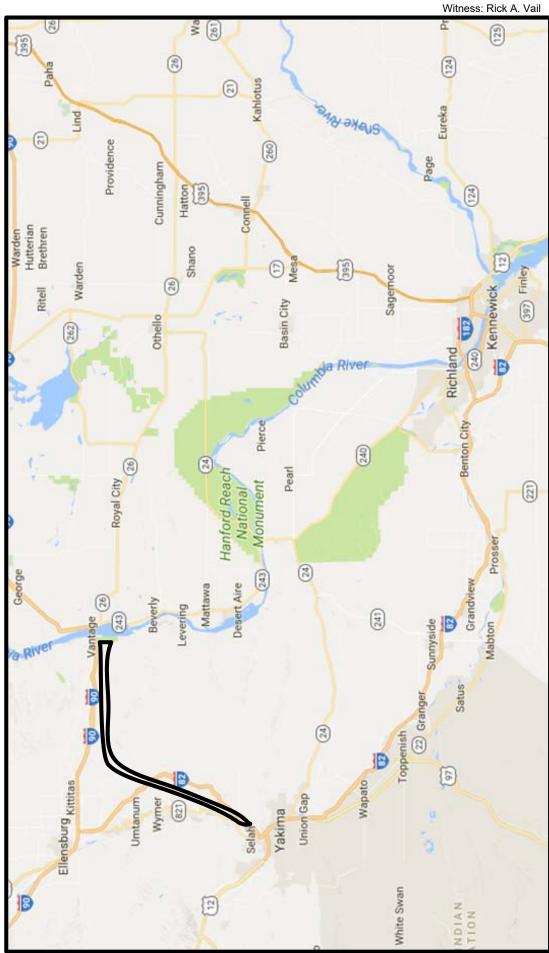

Snow Goose Substation Project

Snow Goose 500-230 KV New Substation Project Area

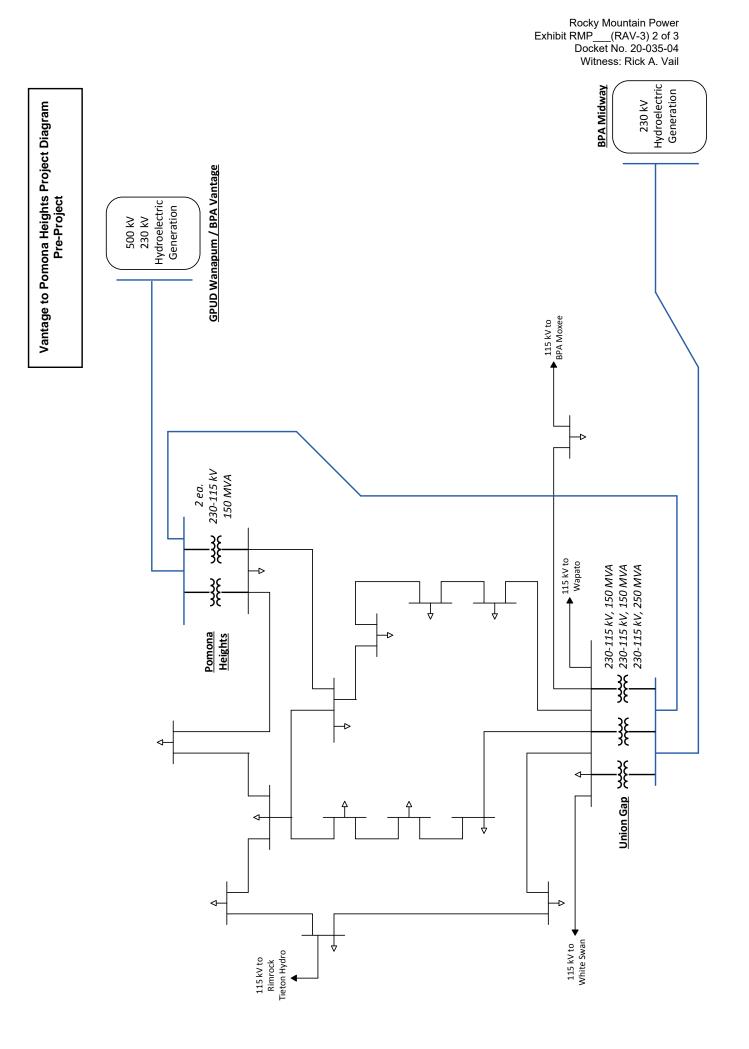
Rocky Mountain Power Exhibit RMP___(RAV-2) 2 of 3 Docket No. 20-035-04 Witness: Rick A. Vail

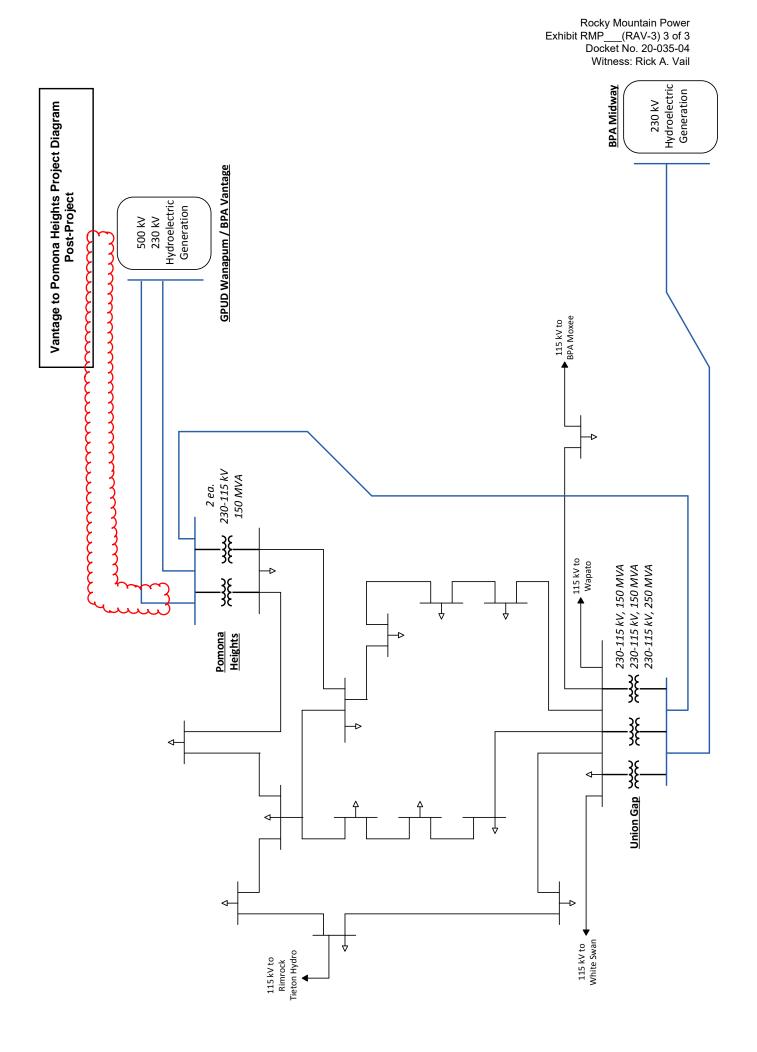
Rocky Mountain Power Exhibit RMP___(RAV-2) 3 of 3 Docket No. 20-035-04 Witness: Rick A. Vail

Rocky Mountain Power Exhibit RMP___(RAV-3) Docket No. 20-035-04 Witness: Rick A. Vail


BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF UTAH

ROCKY MOUNTAIN POWER

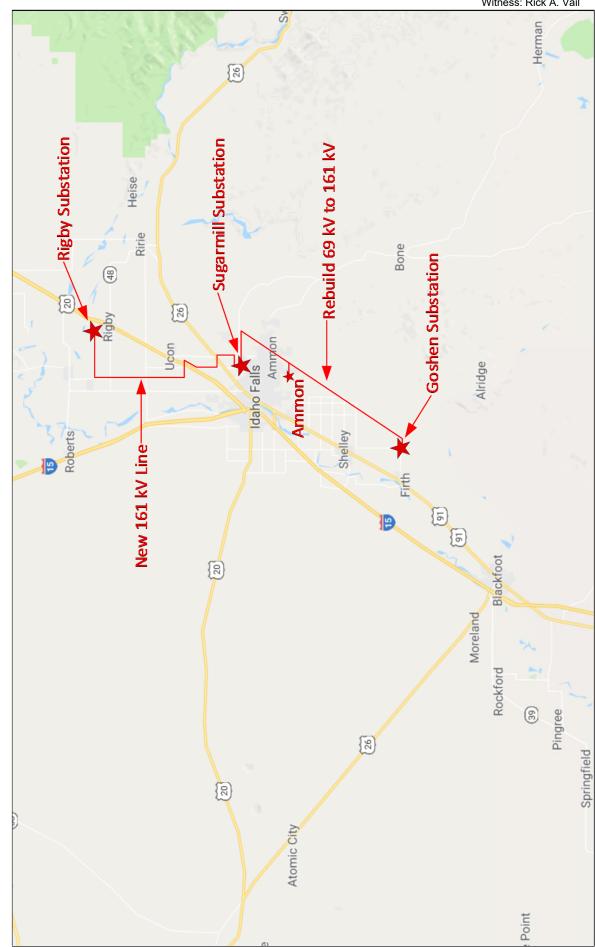

Exhibit Accompanying Direct Testimony of Rick A. Vail


Vantage-Pomona Project

230 KV New Transmission Line Project Area Vantage to Pomona Heights

Rocky Mountain Power Exhibit RMP___(RAV-3) 1 of 3 Docket No. 20-035-04 Witness: Rick A. Vail

Rocky Mountain Power Exhibit RMP___(RAV-4) Docket No. 20-035-04 Witness: Rick A. Vail


BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF UTAH

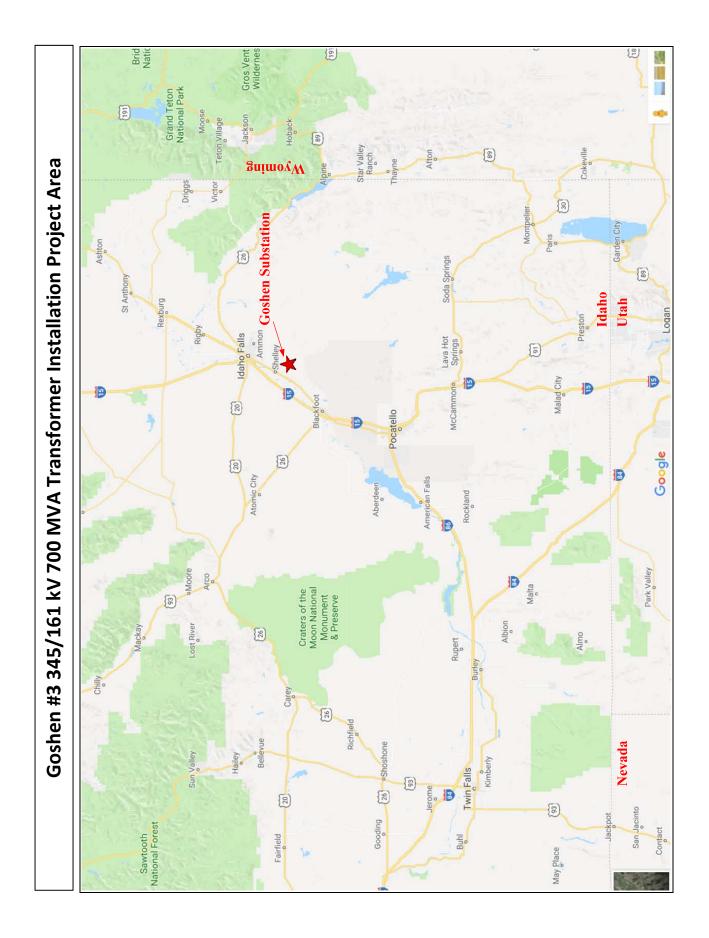
ROCKY MOUNTAIN POWER

Exhibit Accompanying Direct Testimony of Rick A. Vail

Goshen-Sugarmill-Rigby Project

Rocky Mountain Power Exhibit RMP___(RAV-4) 1 of 1 Docket No. 20-035-04 Witness: Rick A. Vail

161 KV Transmission Line Project Area Goshen-Sugarmill-Rigby


Rocky Mountain Power Exhibit RMP___(RAV-5) Docket No. 20-035-04 Witness: Rick A. Vail

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF UTAH

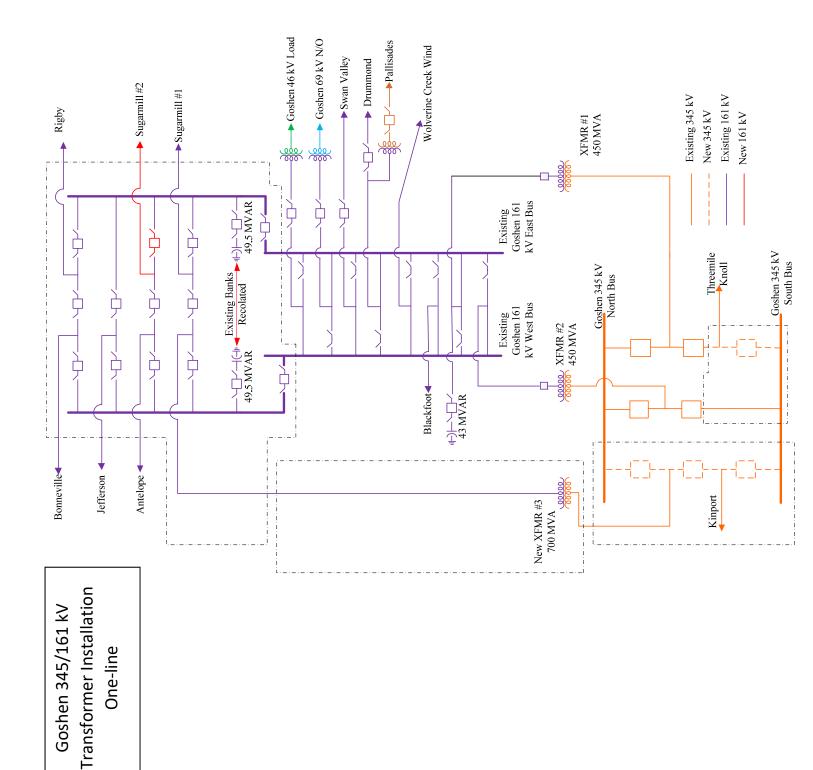

ROCKY MOUNTAIN POWER

Exhibit Accompanying Direct Testimony of Rick A. Vail

Goshen #3 Project

Rocky Mountain Power Exhibit RMP___(RAV-5) 2 of 2 Docket No. 20-035-04 Witness: Rick A. Vail

